The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X  0  X  X  0  X X^2 X^2  X  X  X
 0  X  0 X^2+X  0 X^2+X  0  X X^2 X^2+X X^2  X X^2 X^2+X X^2  X X^2+X  X X^2+X  X  0 X^2+X  X  X  X  0 X^2  0 X^2
 0  0 X^2  0  0 X^2 X^2 X^2 X^2  0 X^2  0  0 X^2  0 X^2  0  0 X^2 X^2 X^2  0  0  0  0 X^2 X^2 X^2  0
 0  0  0 X^2 X^2 X^2 X^2  0  0  0 X^2 X^2 X^2  0  0 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2  0 X^2  0  0

generates a code of length 29 over Z2[X]/(X^3) who�s minimum homogenous weight is 28.

Homogenous weight enumerator: w(x)=1x^0+92x^28+31x^32+4x^36

The gray image is a linear code over GF(2) with n=116, k=7 and d=56.
As d=57 is an upper bound for linear (116,7,2)-codes, this code is optimal over Z2[X]/(X^3) for dimension 7.
This code was found by Heurico 1.16 in 0.0149 seconds.